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Abstract Deduction is decisive but nonetheless mysterious, as I argue in the intro-
duction. I identify the mystery of deduction as surprise-effect and demonstration-
difficulty. The first section delves into how the mystery of deduction is connected
with the representation of information and lays the groundwork for our further
discussions of various kinds of representation. The second and third sections, respec-
tively, present a case study for the comparison between symbolic and diagrammatic
representation systems in terms of how two aspects of the mystery of deduction
– surprise-effect and demonstration-difficulty – are handled. The fourth section
illustrates several well-known examples to show how diagrammatic representation
suggests more clues to the mystery of deduction than symbolic representation and
suggests some conjectures and further work.

When we have a choice to get from given premises to a conclusion either by deduc-
tion or by induction, the choice is obvious: deduction is the way to go. With a
correctly carried out deduction, the truth of the conclusion is guaranteed by the truth
of the premises. Hence, after accepting premises to be true and checking each deduc-
tive step, we embrace the truth of the conclusion. It is one sure way to secure the
certainty of the truth of a proposition. This is the strength of deduction. Hence, math-
ematics, the discipline where deduction plays a crucial role, has enjoyed its special
status in the world of knowledge. However, the strength, some might say, can be a
flip side of the weakness of deduction. If the truth of the premises guarantees the
truth of the conclusion in a correctly carried out deductive process, it means that the
information conveyed in the conclusion is already contained in the premises. All we
are doing in deductive reasoning is extracting information (that we are interested in
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articulating) from given information. If so, then deduction does not seem to tell us
something new which is not conveyed in the premises.

Things are almost opposite in the case of induction: if we reach a conclusion by
inductive reasoning, its truth is not 100 % certain. Nonetheless, there are important
reasons why we need to adopt inductive reasoning in spite of the lack of certainty.
Let’s just imagine, if possible, that inductive reasoning is prohibited. Is science, as
we know it, possible? Very unlikely. If certainty would be the only guide for our
decision-making, there would be no decisions in our ordinary life, either.

The contrast between deductive and inductive reasoning outlined here highlights
a trade-off between certainty and expansion of knowledge. The drawback on each
side has been acknowledged: deduction does not expand our knowledge, and Hume’s
skepticism of the justification of induction is not decisively refuted.

This paper does not contradict these commonly accepted features surrounding the
two different kinds of logical reasoning. Embracing the generally received picture,
I would like to raise the following two questions about deductive reasoning which
lead to the deduction mystery. Naturally we expect surprise at a conclusion reached
by induction since the conclusion conveys more information than the premises. Then
how about a conclusion of valid deductive reasoning? As noted, the truth of the con-
clusion is guaranteed by the truth of the premises. Nonetheless, it is more often than
not that mathematical theorems have struck us as quite surprising and sometimes
almost unbelievable. What is the source of this surprise? Some would respond “I did
not know the information of the conclusion was contained in the information of the
premises!” Why is it that difficult to recognize the containment relationship? I will
call this the surprise-effect, which is the first aspect of the deduction mystery.

Another reaction to an unexpected consequence relation might be: “I do not
believe the conclusion follows from the premises, and I need to see a proof!” This
response invites us to the next topic I plan to take on in this paper: suppose we are
told that this conclusion follows from these premises, and we are asked to prove the
consequence relation by deduction. Why is this so difficult to show? Some theo-
rems have to wait for decades and centuries to be proven. What is the source of this
difficulty, which I will call the demonstration-difficulty?

These two issues, the surprise-effect and the demonstration-difficulty, I claim,
comprise the mystery of deduction, and it is rather surprising (!) to realize how little
attention has been paid to the deduction mystery even though we all have experienced
it repeatedly. In the next section we will see how these two aspects of the deduction
mystery are entangled with each other in the world of representation.

1 Information Represented and Transparency Compared

Valid deductive reasoning is about extracting a piece of needed information from
given information. I claim that the two puzzles above, that is, the surprise-effect and
the demonstration-difficulty, are directly related to the representation issue at several
levels.

First of all, extracting information almost always involves manipulating infor-
mation. Here is a subtle, but important, question to raise: Information is invisible,
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so how are we manipulating this invisible entity? Only in our mysterious mind
in a mysterious way? Not always. More interesting and complicated cases require
representation of information. (Some might argue that we always need representa-
tion, period.) Strictly speaking, manipulating information means manipulating units
which represent the given information, and let me abbreviate this as ‘manipulating
representation.’ Therefore, extracting information presupposes the representation of
information.

One deduction mystery, the surprise-effect, can be viewed in terms of represen-
tation as well. The reason why we are more often than not surprised at a logical
consequence is that it is not obvious at all to see that the information of the conclu-
sion is contained in the information of the premises. What do I mean by ‘see that the
conclusion-information is contained in the premise-information’? Again, what we
(literally) see is not information itself, but the representation of the information, and
the relation we are interested in seeing (but which is not that obvious to observe) is the
relation (that is, the consequence relation) between the premise-representation and
the conclusion-representation. If the conclusion-representation is literally a proper
part of the premise-representation, which is sometimes the case, the consequence
relation is trivial and there is no surprise effect.

But when the conclusion-information is contained in the premise-information,
that is, the conclusion is deductively derivable, the relation between the conclusion-
representation and the premise-representation is not always clearly observable.
In that sense, when we say deductive reasoning is the process of extracting infor-
mation, the expression ‘extracting’ is close to a metaphor. If we have an intuition to
keep ‘extraction’ in a literal sense, or we would like to spell out this metaphorical
procedure, we may paraphrase the information-extracting process in the following
way: in the case of deduction, we transform (!) the premise-representation so that
we may more easily see the conclusion-representation in the transformed premise-
representation in order to extract the conclusion-information from the premise-
information. The entire process is called a proof or a demonstration of a logical
consequence relation.

Unpacking (or paraphrasing) the surprise-effect in terms of representation, we
have reached the topic of a proof, and it is time to relate the representation issue
to our second feature of the deduction mystery, that is, the demonstration-difficulty.
We have examined why it is almost always necessary to manipulate the premise-
representation in order to show that the conclusion is derivable from the given
premises, and as we all have experienced, the majority of derivation processes are
quite difficult. There being more than one correct path from premises to a conclusion,
in many interesting proofs there is no algorithm or menu to follow to find or create
one of those correct paths. These paths are all about transforming one representa-
tion into another. In the midst of a lack of mechanical guidance, we believe practice,
experience, and insight are required to cope with the difficulty involved here.

So far I have pinned down the two aspects of the deduction mystery in the context
of information-representation. Before moving on to the next level, let me put the
matter in a counterfactual way to make the same point slightly differently: if we
could have represented logical consequence in a transparent way, then there would
have been neither a surprise-effect nor a demonstration-difficulty. With a transparent
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representation, we may see that the conclusion-representation is a (physical or literal)
part of the premise-representation without any manipulation, or, if transformations
are needed, then finding a pathway from one representation to another representation
is trivial or mechanical. This counterfactual statement tells us that we do not have
a way to represent information, especially logical consequence relations, in such a
transparent way that we do not need to manipulate given information at all, so that
we could read off all of the logically implied conclusions from the given information.
Let’s call this fictional or utopian state an absolutely transparent representation.

This is not the end of the story of the deduction mystery and the representation
issue, but only the beginning of a longer story I would like to unfold. Admitting that
there is no absolutely transparent way to represent consequence relations, I would like
to suggest that we compare transparency among different modes of representation.
That is, could we say that some representations are more transparent than others, even
though none of them is absolutely transparent? Is it possible that transparency comes
on a spectrum? I believe this could be an extremely important and exciting project to
pursue.

Before we start, let me say upfront that I do not want to claim that transparency
is the only important criterion to evaluate or compare various forms of represen-
tation. Accuracy, accessibility, expressiveness, efficiency, etc. are as important as
transparency when we assess representation. Also, I do not want to say transparency
is a necessary condition for successful or good representation. First of all, as we
acknowledged above, there is no absolutely transparent system, and moreover criteria
for successful or good representation are context-driven, meaning that it all depends
on what one wants to achieve by representation in a given context. In some cases,
there might be a trade-off between transparency versus other desirable aspects (e.g.
generality or accessibility), and we would have to make a choice. All I would like to
focus on in this paper are (i) the relation between the deduction mystery and repre-
sentation and (ii) transparency of representation as one main factor in the alleviation
of the mystery. Hence, my comparison among representations will be limited to the
degrees of their transparency.

We have been talking about transparency in the context of the surprise-effect and
the demonstration-difficulty, and therefore our comparison between two forms of
representation will look into two factors:

(1) Which form of representation exhibits the conclusion-representation in the
premise-representation in a more obvious way so that we do not have to
transform the premise-representation? (If both forms of representation require
manipulations, this factor pushes us to the next factor.)

(2) Which representation guides us more easily in transforming the premise-
representation into the conclusion-representation?

In the next section, I present a case study to illustrate how the first sense of
transparency could play a role for the comparison between two logically equivalent
representation systems, one symbolic and the other diagrammatic. In this case, I will
argue that diagrammatic aspects of representation add transparency to representation.

However, I strongly suspect that in many cases (1) could not be a deciding fac-
tor. The premise-representation could not possibly exhibit in an obvious fashion all



The Mystery of Deduction and Diagrammatic Aspects of Representation 53

of its logical consequences so that we may not need to transform it. Hence, the prob-
lem boils down to (2): Which representation makes it more obvious to see how to
transform the premise-representation into the conclusion-representation? At the same
time, the obviousness criterion reminds us of a complex aspect of a deductive sys-
tem: almost every system is devised and presented to be used, and the role or ability
of users is at the center of the issue of the deduction mystery. Especially the sec-
ond sense of transparency above — ‘more easily’ or ‘more obvious’ — highlights
not only the role of users but also the user-relative and the context-relative aspects of
transparency.1 Therefore, instead of attempting to reach a general conclusion about
the issue, I would like to draw attention to an ongoing uncontroversial practice in
the problem-solving process: we have been encouraged to adopt diagrammatic rep-
resentation over symbolic notation, and we have done so over and over. The second
section takes up this common aspect of the problem solving procedure in order to
explore how diagrammatic aspects of representation have been considered to be more
transparent.

2 One-dimensional versus Two-dimensional Representation

Charles Peirce’s Alpha Graphs are logically equivalent to a sentential language. Both
are propositional logical systems, while one is diagrammatic and the other symbolic.
As far as logical power goes, they are the same. Hence, I believe this is a good place
to start our project of comparing different forms of representation in terms of specific
properties we are interested in. Below, I investigate the relative transparency of a
sentential language and Peirce’s Alpha system.

For a long time the Alpha language has been considered to be analogous to a
sentential language where we have two connectives — negation (which corresponds
to cut) and conjunction (which corresponds to juxtaposition). This view not only

1I thank an anonymous reviewer for the recommendation to emphasize the role of users.
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misled us about the nature of the Alpha system itself, but also obscured interesting
issues involving diagrammatic aspects of Alpha Graphs.

Being equipped with negation and conjunction, the Alpha system is truth-
functionally complete. Even though it looks quite different from our familiar
symbolic system, we know the two systems are logically equivalent to each other,
which might be a relief. But, just as we would like to bring in more (redun-
dant) connectives than negation and conjunction, many were not keen about using
Alpha Graphs for carrying out reasoning, wrongly believing that Alpha Graphs have
only these two connectives. This is one of the reasons why until recently Peirce’s
graphical systems were explored mainly by Peirce scholars, not by logicians or math-
ematicians. That is, the Alpha Graphs were considered to be a meaningful project
within Peirce’s philosophical framework, but not so much as its own free-standing
project.

Some of my previous work showed in detail why the analogy between
Peirce’s Alpha Graphs and a sentential language with negation and conjunction
is wrong from beginning to end. I suggested more visual features be read off
of Alpha Graphs. This allows us to translate one and the same Alpha diagram
into different sentences without manipulation!2 Let me illustrate the point by an
example.

(1) ¬(¬A ∧ ¬(B ∧ ¬C))

(2) A ∨ (B ∧ ¬C)

(3) ¬A → (B ∧ ¬C)

(4) ¬(B ∧ ¬C) → A

When we incorrectly believed that Alpha Graphs had only two kinds of
connectives, only sentence (1) was directly obtainable at first. In order to get
the other logically equivalent sentences, we needed to transform (1) by using
inference rules of sentential logic. However, when we pay attention to other
visual features, we may be able to translate the graph directly into all of these
sentences.

For reading (2): (i) Depending on whether a sentence symbol, say A, is writ-
ten in an evenly enclosed or an oddly enclosed cut, we respectively read it off as
A or ¬A, and (ii) depending on whether juxtaposition takes place in an evenly
enclosed or an oddly enclosed cut, we respectively read it off as conjunction or
disjunction. In the above example, three sentential symbols are read off as A, B,
and ¬C; the juxtaposition between a cut of A and the cut of (B and ¬C) takes
place in an area which is enclosed by an odd number of cuts; and the juxtaposi-
tion between B and ¬C occurs in an area which is enclosed by an even number
of cuts.

2Shin (2002), Section 4.1–4.3.
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For readings (3) and (4): Peirce himself named the following form of nested cuts
a scroll:3

A scroll can be read off as a conditional sentence. Depending on how we carve up
a scroll, shown below, we get two different readings — (3) and (4):

As this example shows, Alpha Graphs are able to directly express more than
negative- and conjunctive-forms of information, but disjunctive- and conditional-
forms as well. Then is the Alpha system just like a sentential language with four
connectives, that is, negation, conjunction, disjunction, and condition? We should
resist a strong temptation to say “yes” to this question. If we equate Alpha Graphs
with a four-connective sentential language, I claim that we would commit the same
mistake as when we equated it with a two-connective sentential language.

Alpha Graphs could be directly read off as a negative, conjunctive, disjunctive, or
conditional sentences, but that does not mean Alpha Graphs function in the same way
as a four-connective sentential language. I would draw your attention to three related
differences between them.

First of all, Alpha Graphs do not introduce any new syntactic device, whether we
read them off with two connectives only (as the traditional method has directed us) or
with four connectives (as presented in the above (1) –(4)). On the other hand, a four-
connective sentential language has more vocabulary than a two-connective sentential
language.

Hence, the next important difference follows: when we introduce a new item of
logical vocabulary, we need new rules to tell us how to manipulate this new piece of
vocabulary. For example, a natural deduction system presents two rules for each con-
nective, one as an introduction rule and the other as an elimination rule. Accordingly,
a two-connective sentential system has four rules of inference, and a four-connective
system eight inference rules. But this is not the case with Alpha Graphs: when we
treat the Alpha system as a four-connective language (by reading off more visual
features), there is no change in its transformation rules, but it keeps the same set of
transformation rules as when we take it as a two-connective language. At a syntactic
level (both in vocabulary and in inference rules), there is no change whether we let
an Alpha Graph be read off as a sentence with two connectives only or as a sentence
with four connectives.

The third difference between the above Alpha graph and any of the above
sentences (1) – (4) is the following: each sentence corresponds to one and only

3Here is C4 [Convention 4]: The scroll is the sign of a conditional proposition de inesse (that is, of material
implication). (Peirce, Ms 450, p. 14, cited by (Roberts 1973), pp. 33–35.)
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one form of information (negative, conjunctive, disjunctive or conditional forms of
information). This is why we call sentence (1) a negation sentence, (2) a disjunctive
sentence, and (3) and (4) conditional sentences. In order to prove that these different
forms of sentences contain the same information — that is, that they are logically
equivalent to one another — we need a proof using inference rules of a given sys-
tem. In contrast, the graph refuses to be named as a specific form of information,
but may be read off as any of the sentences (1)–(4), depending on which visual fea-
tures are salient to the reader. No transformation of the graph is needed to see that the
sentences (1)–(4) are equivalent, but we only need to carve up the graph differently.

Let me call this difference unique versus multiple readability. I claim unique vs.
multiple readability is a main difference between symbolic and diagrammatic repre-
sentation, and I relate this difference to the first kind of transparency we discussed in
the previous section. We said one of the two mysteries of deduction has something
to do with the fact that the conclusion-information is not always plainly exhibited
in the premise-representation, and as a result we need to transform the premise-
representation in order to realize that the conclusion-information is contained there.
Surprise!

Let’s see how this surprising effect is manifest in our example here. The impli-
cation among the four sentences should be proven, that is, a manipulation process is
required. On the other hand, in the case of the Alpha graph, we may read off all of
these four forms of information directly, without manipulation. That is, the informa-
tion all of those four sentences express is plainly exhibited in the graph. Hence, there
is a lesser degree of mystery in Alpha Graphs than in the case of sentences. Bor-
rowing our terminology in the previous section, there is more transparency in Alpha
Graphs than in sentences: all of the four forms of information may be directly rep-
resented in the graph, while the equivalence among the four sentences is far from
transparent, which is why a proof is needed and a surprise may result.

Why is this the case? The immediate answer points to unique vs. multiple read-
ability. When a unique reading is maintained, we cannot expect various forms of
implied information to be read off directly from a given sentence, since one and only
one form of information is read off. For example, sentence (1) is a negation sentence,
period.4 In order to show that the same information can be expressed in a condi-
tional sentence as well, we need a proof. On the other hand, multiple readings of
Alpha graphs allow one and the same graph to be read off in more than one way.5

That is, one and the same graph carries information which could be expressed in dif-
ferent ways, for example, (1) – (4). Adopting multiple readings, we do not need to
transform the above graph in order to show that what the negation sentence (1) rep-
resents is the same as what the conditional sentence (3) represents. All we need to
do is to carve up a given graph in the way we would like to obtain the information.
For example, if one would like to obtain a negation form of information, read off the

4A construction history of a given sentence is unique, and in the case of (1) the first negation comes at
the end of the construction process. For more technical discussions about unique readability see (Enderton
2001 [1972]), Section 1.4.
5For the algorithm of multiple readings, see Section 4.3, (Shin 2012).
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entire content inside the outermost cut first and negate it. If one wants to express the
same information in a conditional form, reading off a scroll at the end would do the
job. Since the user is reading off one and the same graph, no proof is needed, and
there is no surprise either. Unique vs. multiple readability leads to the following cru-
cial difference between sentential and graphical representation: the relation among
the sentences is not explicitly shown, and needs to be shown (i.e. proven), while the
graph exhibits different forms of the same information and there is no need to derive
one from another.

Then what is the root of unique vs. multiple readability? Why cannot we allow
multiple readings for sentential languages? How can we justify multiple readings
for diagrams? What would we lose if multiple readings were prohibited for dia-
grams? The contrast, I claim, is linked to one of the fundamental differences between
symbolic and diagrammatic representation: symbolic representation is linear, that is,
one-dimensional, while diagrammatic representation is two-dimensional. Linear rep-
resentation cannot afford more than one reading for a given formula, since that could
cause ambiguity. Therefore, we do not allow a string like ‘P & Q ∨ R’ to be grammati-
cal: one could parse it either as a conjunctive or as a disjunctive sentence. Parentheses
visually tell us how to enforce unique readability. Both ‘(P &Q) ∨ R’ and ‘P & (Q ∨
R)’ are grammatical units, and the semantics tells us that their meanings are different
from each other. Parentheses guarantee a unique construction history for each gram-
matical string, and visually it is quite natural and intuitive. Alternatively and in the
same fashion, according to the prefix notation, the string ‘∨&PQR’ should be read
one and only one way, making a contrast with ‘&∨PQR.’

Interestingly enough, there is no visual device in the Alpha system analogous to
the parentheses of a sentential language. That does not mean that we cannot enforce
unique reading, and a traditional way to set up the semantics of Peirce’s graphs allows
only one reading – hence the sentence (1) only in the above example. I claim that
unique readability of diagrams is too artificial and unnatural for users. Our experi-
ences tell us how prevalent Gestalt phenomena are in the case of two-dimensional
objects, for example, Necker’s cube, Rubin’s vase, etc. Depending on which part of
the picture becomes a foreground or a background, how to group elements of a pic-
ture, or how to carve up a given picture, we get different interpretations of one and
the same visual object. An Alpha graph, being two-dimensional, can also be carved
up in more than one way. So why not allow multiple readings of it? In the case of a
sentential reading of the string ‘P & Q ∨ R,’ multiple readability would be a disas-
ter, which is why the string is not grammatical and no semantics is applied to it. An
extremely interesting and important fact is that multiple readability does not cause an
ambiguity problem for Alpha Graphs.6 Then it is more intuitive and natural for the
user to read off a given graph in the way he happens to carve it up. Taking advantage
of two-dimensionality is the way to go.

When we do not pay attention to this fundamental difference, it is not surpris-
ing that one kind of approach to representation is unfairly imposed on another.
The analogy between the Alpha System and a two-connective sentential language

6For a formal proof, see Section 4.2.2, (Shin 2002).
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is a prime example of such an incorrect assessment with correspondingly undesir-
able consequences. Assuming that the Alpha System has only two connectives, Don
Roberts emphasizes the importance of the order of negation and conjunction for the
translation of the following Peircean diagram:7

P Q

Notice that we do not read it: ‘Q is true and P is false’, even though Q is evenly
enclosed and P is oddly enclosed [. . . ] we read the graph from the outside (or
least enclosed part) and we proceed inwardly [. . . ]

Nested negation and conjunction sentences were obtained as translations of
Alpha graphs, and for this reason much manipulation was expected to transform
complicated-looking nested sentences into simpler-looking sentences. Under this
kind of approach, one cannot hope that Alpha Graphs will yield new insights. It is
quite instructive to learn that an analogy between Alpha Graphs and a four-connective
sentential language is incorrect as well. No matter what, no sentential language
can afford to abandon unique readability, while Alpha Graphs thrive on the multi-
ple readability. Because Alpha Graphs utilize multiple readings, the containment of
the conclusion-information in the premise-representation is manifest, and the system
becomes transparent.

In light of this limited case study, my conclusion is that diagrammatic
representation, being two-dimensional representation, may allow multiple read-
ings depending on how one carves up a given graph. Multiple readability
may make implied information more transparent than when a unique reading
is enforced as in the case of symbolic representation. Hence, one aspect of
the deduction mystery (which we called the surprise-effect) becomes somewhat
manageable.

3 Mind Stimulated

The second aspect of the deduction mystery, the demonstration-difficulty, is an even
bigger issue, since in many interesting and complicated cases we do not expect that
the conclusion-information is easily readable from the premise-representation. Even
after we are told that the conclusion logically follows from the premises, it may not
be easy to find a proof to show the logical consequence. That is, in a deductively valid
argument, the conclusion, in some sense, is contained in the premises, but often not
in an obvious way. The main task is to transform the given premises, by manipulating
the premise-representation, in order to make the containment relation obvious. Again,

7(Roberts 1973), p. 39.
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I will argue that how information is represented could be at least as important an
issue for the demonstration-difficulty.

Let P be premises and C a conclusion. Suppose we need to show the logical con-
sequence relation between them. As said above, most probably we need intermediate
stages to get to C from P . That is,

P −→ D1 · · · · · · −→ Dn −→ C

To simplify our story, let’s collapse these n intermediate stages. So,

P −→ D∗ −→ C

Please note that we are not talking about a unique series D1, · · · · · · , Dn, but one
of the correct series. The mysterious demonstration-difficulty is about finding one of
the “correct” D*s.

What do I mean by ‘correct’? One necessary condition to be correct is that D*
should be a logical consequence of P . However, that would not be enough for a series
to be a correct D*. There are many, possibly an infinite number of, sequences that
are logical consequences of P , but not all of them would be a correct one to get to
C. Similarly, we can think about many D*s from which C follows. But, again, many
of them would not be directly helpful to get to C. That is, a given D* is correct
not only because it is a logical consequence of P and C is a logical consequence
of D*, but also because it is helpful in bridging the gap between P and C. There is
no menu or fixed algorithm to make a correct choice among the many alternatives,
that is, the many logically consistent alternatives. This is the core of the mysterious
demonstration-difficulty.

I would like to relate the current discussion to our common practice in searching
for a right solution — adopting diagrams as a heuristic tool. Whether one accepts a
sequence of diagrams as a rigorous proof or not, we often draw diagrams in sketching
or outlining a proof. A strong recommendation for this practice is found in Polya’s
classical work “How to Solve it.”8

[E]ven if your problem is not a problem of geometry, you may try to draw
a figure. To find a lucid geometric representation for your nongeometrical
problem could be an important step toward the solution.

What is even more intriguing, we do not often encounter the practice of running
in the opposite direction, that is, converting diagrammatic problems into symbolic
representation. There must be something special about diagrammatic representation
which helps with the demonstration-difficulty of deduction, and we would like to pin
down what it is about diagrammatic representation which symbolic representation
lacks.

8(Polya 1973 [1971]), pp. 107–8.
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Let me start with a simple standard textbook proof. This is not Euclid’s cor-
responding original proof, but a simpler one which will suit our needs. For easy
reference in our further discussions, let me number the steps.

Proposition 1 If two sides of a triangle are congruent, the angles opposite them are
congruent.

Proof Given a triangle, ABC, we want to prove ∠ABC = ∠ACB.

(1) We draw a line from A to the center of the line BC, say D.

(2) Then, �ABD is congruent to �ACD.
(3) Therefore, we know ∠ABC = ∠ACB.

As our experience of this short proof tells us, the demonstration-difficulty
lies in the step where we bring in a line AD — step (1). Once the line AD

is drawn, the rest of the proof seems to be quite smooth: we see two con-
gruent triangles, �ABD and �ACD, emerge. Then, by the definition of con-
gruency, we know the two angles, ∠ABC and ∠ACB, are congruent to each
other.

What is special about step (1), compared with steps (2) and (3)? First, in step
(1) we are drawing an auxiliary line, which means we are introducing a new object
into a proof. On the other hand, in steps (2) and (3), all we do is observe and recall
a definition. Here, action (like drawing) contrasts with observation or recollection.
Second, there is no specific guideline for the action of (1), except that it should be
approved by axioms or by previously proven theorems. In this case, the issue is not
whether we can draw line AD or how we can find a center of line BC, etc. The heart
of the matter is this: How do we know we need to draw a line from A to the center of
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the line BC to get to the conclusion? The fact is that there are many other logically
valid steps available to us. For example,

All of these new objects could have been introduced and none of them is ille-
gitimate. However, not all of them would make the rest of the proof go smoothly.
That is, steps (2) and (3) do not get prompted by these other lines unlike our line in
step (1) above. Among logically valid multiple choices, we need to find an object
which fits the bill, and there is no algorithm or menu for a right choice. Hence, the
demonstration-difficulty in this case amounts to the difficulty of introducing a correct
new object into a proof. It requires ingenuity!

Back to our main topic, the relation between the deduction mystery and
forms of representation: Could different forms of representation make a differ-
ence in this ingenious stage? I would like to propose that diagrammatic repre-
sentation stimulates the mind in such a way as to prompt a new correct aux-
iliary object more easily than symbolic representation does. Why is this the
case?

There have been warnings against the use of diagrams in a rigorous proof.
The main reason is that we might rely on accidental properties of a diagram
we happen to draw. That is, diagrams could mislead us. Can we overcome this
misleading aspect of diagrammatic representation? We know we cannot get rid
of accidental properties of a token-diagram, since a diagram, once being drawn,
has both universal and particular properties. An infamous ridicule by Berkeley
of Locke’s abstract triangle could be viewed as a dilemma facing diagrammatic
representation.

If any man has the faculty of framing in his mind such an idea of a triangle as
is here [quoted passage about the general idea of a triangle out of An Essay on
Human Understanding, (IV. vii. 9)] described, it is in vain to pretend to dispute
him out of it, nor would I go about it. All I desire is that the reader would
fully and certainly inform himself whether he has such an idea or no. And this,
methinks, can be no hard task for anyone to perform. What more easy than for
anyone to look a little into his own thoughts, and there try whether he has, or
can attain to have, an idea that shall correspond with the description that is here
given of the general idea of a triangle, which is “neither oblique nor rectangle,
equilateral, equicrural nor scalenon, but all and none of these at once?”9

9(Berkeley 1920 [1776]), Introduction Section 13
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How could a triangle be drawn without its particular shape, size, etc.? Particular-
ity is inevitable in the case of diagrammatic representation. This is a main reason
why diagrams have been avoided in mathematical or logical proofs, where gen-
erality or universality is especially important. Symbolic representation comes at
the other end in terms of the particularity-versus-generality spectrum.10 When we
say ‘let ABC be a triangle,’ we do not attribute any specific size to the triangle,
and there is no particularity whatsoever. ABC is a triangle in general. Hence, it
seems to be quite natural that mathematical proof has been dominated by symbolic
notation.

Embracing the ongoing practice and understanding the rationale behind the dom-
inance of symbolic representation, let us go back to the issue we raised at the
beginning of the section: Why, nonetheless, has it been the case that diagrams are
used as a heuristic tool? I argue that the answer has something to do with the
particularity of diagrammatic representation. Ironically, we have seen that particu-
larity, which causes a lack of generality, has prevented diagrams from getting into
proofs. Then how could this property help us adopt diagrams at the stage of finding
a proof?

In the above simple proof example, we identified the step where the mystery of
deduction lies, that is, the root of the demonstration-difficulty: we need to bring in a
new object, and for this activity there is no mechanical algorithm to follow. Hence, it
requires a creative and ingenious mind to search for a correct auxiliary object so that
the object may provide us with a new way of viewing the issue we are working on.
Then let’s compare the figure drawn above as a triangle and the symbolic notation
ABC as an isosceles triangle. Both kinds of notation work as the representation of
an isosceles triangle in general, but in strikingly different ways. A token of an isosce-
les triangle drawn is a particular isosceles triangle while ABC is declared to be an
isosceles triangle in general.

As we know, Euclidean proofs can be arithmetized, and hence we may present our
example proof as a symbolic deduction sequence. In a step corresponding to where
the auxiliary line AD is drawn, we may find an existential introduction inference rule
applied to an axiom, a definition, or a previously proven theorem. A crucial question
is: Which representation helps us to find an auxiliary line so that two congruent tri-
angles may emerge, leading us to conclude that the angles we are interested in are
congruent to each other? Obviously, the particular diagram drawn is the answer. It is
not because the drawn triangle itself has a specific size and a particular shape, but
because the drawn triangle exhibits essential features of an isosceles triangle in gen-
eral. In contrast, symbolic representation ABC removes all of the particularity which
any diagrammatic representation could have, and therefore it successfully acquires
generality which is a powerful property of mathematics. There is a price, though.
ABC represents an isosceles triangle by stipulation and shows nothing any isosce-
les triangle has, for example, having three sides two of which have the same length.
That is, while it does not have any particular property that any particular token of an
isosceles triangle could possess, symbolic representation ABC does not have any

10For further discussions of this topic, refer to Shin (2012).
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property every isosceles triangle shares either. It is an extreme case of a lack of
particularity.

This deficiency, I claim, makes the demonstration-difficulty mystery even more
difficult for symbolic than for diagrammatic representation. Diagrammatic repre-
sentation displays common features of every isosceles triangle, along with specific
accidental features of an isosceles triangle-token. Visually vivid features stimu-
late the mind to create a new object more easily than when no visual feature
is available. Without these visual features we need to recall the definition of an
isosceles triangle to mind and search for a right axiom or previously proven the-
orem to be used here. With symbols, nothing is available to stimulate the mind
to narrow down choices of a new object, but we have only our memory to
rely on.

Examining the issue carefully, we realize that it is not correct to say that diagrams
lack generality. Instead, the risk is that generality might be blurred or overridden by
particularity. As our practice shows, when needed, visually represented generality
activates the mind in a more lively fashion so that we may experiment on new objects
more efficiently. No wonder at the brainstorming stage we draw and draw! Further-
more, noting that generality is represented in diagrams, we may set up guidelines
to clarify which represented properties are essential, and not accidental, properties.
Then we can avoid misusing diagrams, so that diagrammatic formalism is justified,
as recent literature shows.11 If so, there is no need to limit the language in a proof
to symbolic representation. This is another important topic, but beyond the scope of
this paper.

4 More Examples and Further Work

The two case studies, Alpha Graphs in Section 2 and a geometry proof in Section
3, respectively illustrated a comparison between diagrammatic and symbolic repre-
sentation in terms of two aspects of the deduction mystery — the surprise-effect and
the demonstration-difficulty. In both cases, diagrammatic representation makes the
deduction process more transparent than symbolic representation. The two dimen-
sionality of Alpha graphs lets the reader carve up one and the same diagram in more
than one way, which reduces the surprise-effect, and thereby makes the deduction
mystery somewhat manageable. The particularity of figures in a Euclidean proof
stimulates our mind to introduce a new object to the discourse so that new figures
may be constructed to find a right solution — helping to solve the demonstration-
difficulty. Some might pause here with the following comments: a Euclidean proof is
about geometric figures. Hence, we should not be surprised to see that diagrammatic
representation is more advantageous to the reasoning process than symbolic notation.

11(Anderson et al. 2000), (Barwise 1993), (Barwise and Allwein 1996), (Barwise and Etchemendy 1989),
(Barwise and Etchemendy 1991), (Barwise and Etchemendy 1995), (Barwise and Hammer 1994), (Chan-
drasekaran et al. 1995), (Hammer 1995), (Harel 1988), (Miller 2008), (Mumma 2006), (Shin 1994), (Shin
2002), (Sowa 1984) and http://www.cmis.brighton.ac.uk/research/vmg.

http://www.cmis.brighton.ac.uk/research/vmg
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Taking this comment seriously, this section brings in non-geometric examples to
confirm the claims that have been made in previous sections. First, let me present
three different styles of a proof for a well-known non-geometric proposition and
compare them. I would also like to briefly introduce a familiar diagrammatic repre-
sentation in order to encourage further work on the relation between representation
forms and our reasoning process.

Proposition 2 ∀n (1 + · · · + n = [n · (n + 1)]/2).

Let’s consider three different ways to prove the proposition.

Proof by induction on n This proof does not bring in any diagrammatic representa-
tion.

(Base step) It is when n = 1. 1 = [1 · 2]/2.
(Inductive Step)
Inductive Hypothesis: Assume that 1 + · · · + k = [k · (k + 1)]/2 for some k.
[Show 1 + · · · + (k + 1) = [(k + 1) · ((k + 1) + 1)]/2.]

1 + · · · + (k + 1) = 1 + · · · + k + (k + 1)

= [k · (k + 1)]/2 + (k + 1) by IH

= [k · (k + 1)]/2 + 2(k + 1)/2

= [k · (k + 1) + 2(k + 1)]/2

= [(k + 1) · (k + 2)]/2

= [(k + 1) · ((k + 1) + 1)]/2

Proof by pebbles The following diagram is a key to the proof.

When 1 + · · · + n pebbles are copied, we see n rows and (n + 1) columns, that is,
n · (n + 1) pebbles in the square. Hence, we obtain 1 + · · · + n = [n · (n + 1)]/2.

Proof by two-dimensional presentation This proof does not use a diagram, but intu-
itively it is closer to the pebble argument than to the inductive proof. Why is this the
case?
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Let’s write up the proposition (1 + · · · + n) in two slightly different ways:

1 + 2 + · · · + (n − 1) + n

n + (n − 1) + · · · + 2 + 1

Now a new form emerges and we could write up one more line:

1 + 2 + · · · + (n − 1) + n

n + (n − 1) + · · · + 2 + 1

(n + 1) + (n + 1) + · · · + (n + 1) + (n + 1)

Then the last line amounts to n · (n+ 1) and the original line we aim to compute is
[n · (n + 1)]/2. Hence, 1 + · · · + n = [n · (n + 1)]/2. A key step here is to represent
two formulas in a two-dimensional way so that we may come up with a new way to
add 1+n, 2+ (n−1), etc. This, I believe, is a main reason why the third proof could
be classified as a diagrammatic proof, even though there is no explicit diagram used.
In that sense, I would like to categorize both the pebble argument and this argument
as diagrammatic.

This is a classic example to show that the (heuristic) power of diagrams is not
limited to geometric problems and that a non-geometric problem can benefit from
diagrammatic representation in order to gain insight. However, it would be too hasty
to conclude that one form of representation is better than another. On the contrary, I
would like to say that the choice of the right kind of representation is highly context-
dependent. Let me discuss one more example in order to illustrate further aspects of
various forms of representation.

Representation of a Turing Machine

All of (a), (b), and (c) represent a Turing Machine which writes three 1’s on a
blank tape:12

(a) Set of quadruples

〈q1, S0, S1, q1〉, 〈q1, S1, L, q2〉, 〈q2, S0, S1, q2〉, 〈q2, S1, L, q2〉,〈q2, S0, S1, q3〉
(b) Machine table

12(Boolos et al. 2002), p. 26. Symbol S0 stands for a blank and S1 for 1.
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(c) Flow graph

Representation (a), being linear, is symbolic, while representation (c) looks dia-
grammatic. How about the machine table (b)? Intuitively, it looks diagrammatic, but
it is important to clarify our intuition: In what sense is (b) closer to (c) than to (a)?

Suppose one tries to add an instruction, say, if the machine scans a blank in state
2, it is to go to the left cell and stay in the same state. This instruction contradicts
existing ones. In the case of a flow chart, when one draws an arrow from q2 to itself,
written S0:L, a contradiction between this new arrow and S0:S1 can be easily caught.
Quadruple representation (a), mainly because of its linearity, would allow one more
quadruple 〈q2, S0, L, q2〉 to be added more easily without perceiving a contradiction.
How about the machine table representation (b)? Go to where the column for blank
(which is the first one) and the row for state 2 (which is the second row) meet and
write an entry Lq2. Then we will see that the spot is already occupied by the entry
S1q2, which means that a new instruction contradicts an existing one. That is, repre-
sentation (b) also makes adding contradictory pieces of instruction more transparent
than quadruple representation (a). In that sense, both (b) and (c) are two-dimensional
representations, while (a) is one-dimensional.

On the other hand, a loop, if any, is represented much more graphically and clearly
in (c) than in (a) or (b). If an arrow is drawn from q3 to q1 with S1:L, we perceive a
loop, period. In the case of (b), the empty spot would be filled with Lq1, but a loop is
not clearly visualized as in (c). How many of us would try to design a Turing Machine
using quadruples or even a machine table? The flow chart is clearly the easiest to
read off and hence the most popular way to design Turing machines. However, when
we prove that Turing machines are enumerable, understanding a Turing machine as a
linear concatenation of vocabulary is crucial. The quadruple representation can easily
convince us that Turing machines (as a set of finite words) are enumerable, and hence
there must be functions Turing machines cannot compute. Why? We have a proof
that functions are not enumerable.13 This is a good example to show that each form
of representation has its own strengths and weaknesses, and I believe more work can
be done in the future on this topic.

Several hunches in random order: Two-dimensional representation has more space
freedom than one-dimensional linear representation. Related to this greater freedom,
a new configuration more easily emerges when new information is added. That is,
Gestalt phenomena are prevalent in two-dimensional representation. This might be
one of the weakest aspects of linear representation. Since every piece of information
is linearly added, in order to figure out relations among given pieces of information,

13Non-enumerability of functions can be proven using a diagonalization, and this is another well-known
place where diagrammatic representation is more intuitive.
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linear representation usually requires serious manipulation. This is one of the reasons
why deduction is difficult even though the conclusion-information is contained in
the premise-information. On the other hand, there must be a reason why most of the
historical record has been kept in an overwhelmingly linear form. Linearity of time
is one factor, some have suggested. Other practical advantages — that it takes up less
space, that it is easier to add things one by one, etc. — are hard to ignore. Overall,
I believe that different forms of representation are complimentary to one another. It
will be extremely interesting and important to look into more accurate descriptions
of the relationships among various kinds of representation so that an appropriate kind
of representation may be chosen for any given purpose.
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